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Abstract
Domestication and breeding for human-desired morphological traits can reduce popu-
lation genetic diversity via founder events and artificial selection, resulting in inbreed-
ing depression and genetic disorders. The ferret (Mustela putorius furo) was 
domesticated from European polecats (M. putorius), transported to multiple conti-
nents, and has been artificially selected for several traits. The ferret is now a common 
pet, a laboratory model organism, and feral ferrets can impact native biodiversity. We 
hypothesized global ferret trade resulted in distinct international genetic clusters and 
that ferrets transported to other continents would have lower genetic diversity than 
ferrets from Europe because of extreme founder events and no hybridization with 
wild polecats or genetically diverse ferrets. To assess these hypotheses, we genotyped 
765 ferrets at 31 microsatellites from 11 countries among the continents of North 
America, Europe, and Australia and estimated population structure and genetic diver-
sity. Fifteen M. putorius were genotyped for comparison. Our study indicated ferrets 
exhibit geographically distinct clusters and highlights the low genetic variation in cer-
tain countries. Australian and North American clusters have the lowest genetic diversi-
ties and highest inbreeding metrics whereas the United Kingdom (UK) cluster exhibited 
intermediate genetic diversity. Non-UK European ferrets had high genetic diversity, 
possibly a result of introgression with wild polecats. Notably, Hungarian ferrets had 
the highest genetic diversity and Hungary is the only country sampled with two wild 
polecat species. Our research has broad social, economic, and biomedical importance. 
Ferret owners and veterinarians should be made aware of potential inbreeding de-
pression. Breeders in North America and Australia would benefit by incorporating ge-
netically diverse ferrets from mainland Europe. Laboratories using ferrets as biomedical 
organisms should consider diversifying their genetic stock and incorporating genetic 
information into bioassays. These results also have forensic applications for conserv-
ing the genetics of wild polecat species and for identifying and managing sources of 
feral ferrets causing ecosystem damage.
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1  | INTRODUCTION

Domestication can result in a founder effect where only a few wild an-
imals contribute to the gene pool and evolutionary trajectory of the 
domesticated lineage (Diamond, 2002; Mimura et al., 2017; Petersson, 
Jaurvi, Steffner, & Ragnarsson, 1996; Teletchea & Fontaine, 2014). 
Additionally, artificial selection for desirable morphological traits can 
further reduce genetic variation (Driscoll, Macdonald, & O’Brien, 2009; 
Leroy, 2011; Muñoz-Fuentes et al., 2014). This loss of genetic diver-
sity can result in inbreeding depression (Charlesworth & Charlesworth, 
1999; Hedrick & Garcia-Dorado, 2016; Leroy, 2014), which can be 
particularly problematic when a domesticated species is economi-
cally or ecologically important (González-Recio, López de Maturana, 
& Gutiérrez, 2007; O’Neill, Church, McGreevy, Thomson, & Brodbelt, 
2013; Rhymer & Simberloff, 1996). Thus, understanding the popula-
tion structure and genetic diversity of a domestic species is critically 
important for long-term persistence and can have global or regional 
implications based on the animal’s role in society and its genetic status.

The ferret (Mustela putorius furo Linnaeus, 1758) was domesti-
cated from the European polecat (M. putorius Linnaeus, 1758) primar-
ily for hunting rabbits and rats (Blandford, 1987; Hosoda et al., 2000; 
Kurose, Abramov, & Masuda, 2000, 2008). More recently, the ferret 
has become a common household pet (Hernádi, Kis, Turcsán, & Topál, 
2012) and, in some countries, is a laboratory model organism (Ball, 
2006) or considered invasive (O’Donnell, Weston, & Monks, 2017). 
Selection for specific ferret coat colors has been associated with ge-
netically determined physical abnormalities (Blaszczyk et al., 2007; 
Piazza, Abitbol, Gnirs, Huynh, & Cauzinille, 2014), and there is rising 
concern about the potential role of inbreeding and low genetic diver-
sity in the increasing incidence of ferret cancers (Avallone et al., 2016; 
Bielinska, Parviainen, Kiiveri, Heikinheimo, & Wilson, 2009; Clagett, 
Johnston, & Han, 2016; Lewington, 2007b). Thus, for ferrets, an as-
sessment of population structure and regional genetic diversity will be 
of broad social, economic, and biomedical importance.

On a global scale, pet owners and veterinarians would be informed 
of genetic diversity and potential inbreeding depression (Fox & Marini, 
2014) and breeders trying to avoid genetic disorders would benefit by 
applying information about genetic diversity to regional and international 
breeding programs (Howard, Lynch, Santymire, Marinari, & Wildt, 2015; 
Willoughby et al., 2015). Biomedical laboratories using ferrets as model 
organisms would benefit by incorporating genetic diversity information 
into their bioassays because inbred individuals can be more susceptible 
to disease exposures (Ball, 2006; Ilmonen et al., 2008). These data could 
also be used to identify and conserve wild polecat species which could 
face reductions in genetic diversity when hybridized with feral ferrets 
(Costa et al., 2013; Rhymer & Simberloff, 1996). Similarly, the conser-
vation genetics approach used here could have forensic and wildlife 

management applications for identifying and managing sources of feral 
ferrets causing ecosystem damage (O’Donnell et al., 2017; Wells, 2009).

Despite the worldwide distribution of ferrets, global patterns of 
domestic ferret population structure and genetic diversity have not 
been characterized (Costa et al., 2013; Ernest, Drazenovich, Dalbeck, 
& Hawkins, 2012; Thomson, 1951). Intercontinental translocations 
from Europe have not been well recorded, and the current under-
standing of ferret transportation and domestication relies heavily on 
transgenerational word of mouth (Church, 2007; Lewington, 2007a) 
and historic letters (Buller, 1877). Patterns of domestication are also 
clouded by the historic backcrossing with M. putorius (Costa et al., 
2013; Davison et al., 1999; Marmi, López-Giráldez, & Domingo-Roura, 
2004; Pitt, 1921; Poole, 1972) and potential hybridization with other 
polecat species (Lodé, Guiral, & Peltier, 2005; Williams et al., 1996). 
Although historical artificial selection for hunting ability (Carnegie, 
2013; Owen, 1984) and contemporary artificial selection for coat 
colors and patterns (Blaszczyk et al., 2007; Lewington, 2007b; Piazza 
et al., 2014) likely had a large impact on ferret translocations and ge-
netic diversity, international differences in trade laws and breeding 
programs could also have limited or reduced the genetic diversity of 
certain populations (Lee, 2002; Northern Territory Government, 2016; 
Queensland Government, 2016; Willoughby et al., 2015).

Our goal was to evaluate the genetic structure and levels of genetic 
diversity and inbreeding in pet ferrets from multiple countries among the 
continents of North America, Europe, and Australia. We hypothesized 
global ferret trade resulted in distinct international genetic clusters. We 
also hypothesized ferrets transported to other continents would have 
lower genetic diversity than ferrets from Europe because of extreme 
founder events and no opportunities to hybridize with wild polecats 
or genetically diverse ferrets. Our international and intercontinental 
assessment of ferret population genetics provides broad insights into 
global patterns of founder events, and the impacts of isolation and in-
breeding on the population structure of a domesticated species (Larson 
& Burger, 2013). Our results will be of broad social, economic, and bio-
medical importance and have direct applications to the ferret industry.

2  | MATERIALS AND METHODS

2.1 | Sample collection and DNA extraction

Cells for DNA extraction were collected from 765 domestic ferrets 
(M. putorius furo; Australia: 222; Canada: 56; Denmark: 60; England: 
63; Hungary: 19; the Netherlands: 48; Norway: 41; New Zealand: 74; 
Scotland: 16; Sweden: 27; United States: 139) and 15 European pole-
cats (M. putorius; all from England) via buccal swab and/or hair (>10 hairs 
per ferret) plucked from the base of the tail (Table S1). Samples were 
collected by coauthors or via collaborating veterinarians between 2008 
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and 2011 from personal homes, rescue shelters, or breeders. During 
that time, cells from a single specimen that died in 2007 were collected 
from an Australian museum. The polecats were sampled from private 
breeders who had captured the individuals as wild polecats. Most pole-
cats originated near the western border of England, which is an area 
known to have polecats with a high amount of introgression with fer-
rets (Costa et al., 2013). Any individuals known (via breeding programs) 
or suspected by the owners to be hybrids were removed from analy-
ses and were not included in this sample. Swab samples were stored 
at −70°C, whereas hair was stored in paper envelopes at stable room 
temperature. DNA was extracted from buccal swabs or hair follicles 
from 2010 to 2011 following the exact protocols of Ernest et al. (2012).

2.2 | PCR

Forward primers for 31 microsatellite loci (Table S2; Dallas & Piertney, 
1998; Domingo-Roura et al., 2003; Ernest et al., 2012; Lam, Gagne, & 
Ernest, 2016; O’Connell, Wright, & Farid, 1996; Paetkau & Strobeck, 
1994) were fluorescently labeled (NED, PET, FAM, or VIC; Applied 
Biosystems Inc., Foster City, CA, USA). Two loci were amplified 
singly, and the other 29 loci were split among seven multiplexes 
based on fragment size and fluorescent label compatibility (Table 
S2). Amplifications were carried out in Bio-Rad MyCyclers (Bio-Rad, 
Hercules, CA, USA) using Ernest et al. (2012) multiplex PCR protocols 
(Table S2). PCR products were analyzed on an ABI 3730 capillary DNA 
Analyzer (Life Technologies, Carlsbad, CA, USA). Negative controls 
and positive controls were included with each PCR run. Fragments 
were visualized with STRand version 2.3.69 (Toonen & Hughes, 
2001). Heterozygous and homozygous loci were run at least twice or 
three times, respectively.

2.3 | Population genetic structure

We used three approaches to assess population structure, including F 
statistics, Bayesian population assignment models, and a discriminant 
analysis of principal components (DAPC). Population divergence (FST) 
was calculated in GenAlEx 6.502 (Peakall & Smouse, 2006, 2012), and 
significance testing was based on 999 permutations. We used spa-
tially explicit hierarchical Bayesian clustering programs GENELAND 
4.0 (Guillot, Mortier, & Estoup, 2005) and TESS 2.3 (Durand, Chen, & 
François, 2009) to assess population assignments, and adegenet 2.0.1 
(Jombart, 2008) for the DAPC.

In GENELAND, the number of populations (K) is a parameter op-
timized by the model. We followed developer recommendations for 
determining K and individual population assignments (Guillot, Estoup, 
Mortier, & Cosson, 2005). First, we ran 15 spatial models allowing K 
to vary from 1 to 10. All models converged on the same K. Thus, we 
ran five additional models fixing K at the mode and selected the model 
with the highest log-likelihood to run an admixture model. Each run 
included 100,000 iterations, a thinning interval of 1,000, and a 25% 
burn-in period prior to extracting model output.

In TESS, K must be specified and tested over a range of possi-
ble values. Model selection must be used to determine the K with 

the best fit to the data. We followed developer instructions for de-
termining K and population assignments. First, we ran 10 nonad-
mixture models for each K from 2 to 10. For model comparisons, 
TESS computes a deviance information criterion (DIC). We ran 10 
spatially conditional autoregressive admixture models for each K to 
the DIC plateau of nonadmixture models. All models included pair-
wise great circle geographic distances for weighting the Voronoi 
neighborhood, 100,000 iterations, and a 25% burn-in period. We 
retained 20% of the models which contained the lowest DIC scores 
and used CLUMPP 1.1.2 to perform model averaging (Jakobsson & 
Rosenberg, 2007).

To assess whether spatial priors or sample size were driving 
population assignments (Puechmaille, 2016), we also used program 
STRUCTURE 2.3.4 (Pritchard et al., 2000). We randomly subsetted 
the samples from each country to 15, which was the number of wild 
polecats sampled. Using 180 subsetted samples, we ran 10 admixture 
models for each K from 1 to 10 with uniform, nonspatial priors, includ-
ing 100,000 iterations and a 25% burn-in period.

Because the algorithm for individual assignments in adegenet 
is not as powerful as Bayesian population assignment algorithms 
(Jombart, Devillard, & Balloux, 2010), we defined populations in the 
DAPC using countries as focal groups and treated wild European pole-
cats as a separate group. We retained all principal components for dis-
criminant analyses.

2.4 | Microsatellite loci and genetic diversity

Tests for linkage disequilibrium, deviations from Hardy–Weinberg 
proportions, and null alleles were assessed in GENEPOP 4.5.1 
(Rousset, 2008). Given the major differences in sample sizes among 
countries, we used genetic diversity estimates that are robust to 
sample size or accounted for sample size. We calculated unbiased 
expected heterozygosity in GenAlEx (Nei, 1978). To measure the 
number of alleles, we calculated allelic richness using sample size-
correcting rarefaction methods in FSTAT 2.9.3.2 (Goudet, 1995; 
Kalinowski, 2004). To assess inbreeding, we calculated internal 
relatedness using package Rhh 1.0.2 in Program R 3.3.0 (Alho, 
Valimaki, & Merila, 2010). Internal relatedness measures a relative 
outbred–inbred continuum, where negative values are sugges-
tive of outbred individuals and positive scores are suggestive of 
inbreeding (Amos et al., 2001). Internal relatedness is an exten-
sion of standardized heterozygosity which standardizes estimates 
based on allele frequencies of the entire global sample of ferrets 
(Amos et al., 2001). We reported both the raw number or private 
alleles and the percent of private alleles, which was standardized 
to sample size.

3  | RESULTS

3.1 | Population genetic structure

All 31 loci were polymorphic among pooled samples. Only 3% of in-
dividuals had any missing data. Most individuals with missing data 
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were missing allelic information at a single locus; however, two indi-
viduals had two missing loci, and a single individual had four missing 
loci. There was no evidence for null alleles or deviations from Hardy–
Weinberg proportions in each assigned population after Bonferroni 
corrections. European polecats had the lowest FST values with ferrets 
from England and Scotland and the highest differentiation with fer-
rets from Australia, Canada, and the United States (Table 1). Australia 
had high pairwise FST values with every country except New Zealand 
and the Netherlands. European countries were not strongly differen-
tiated but exhibited moderate differentiation with the United States 
and Canada. When population differentiation was assessed based 
on population assignments in GENELAND, the United Kingdom (UK: 
England & Scotland ferrets) cluster was not strongly differentiated 
from non-UK European cluster (Table 1). The North American cluster 
was strongly differentiated from the Australian cluster and moder-
ately differentiated from both European clusters.

Program GENELAND identified four genetic clusters (Figure 1a), 
including distinct North American and Australian clusters. Europe 
had two clusters, separating the UK ferrets from non-UK European 
ferrets. New Zealand ferrets primarily assigned to the UK cluster, but 
also exhibited admixture with the Australian cluster. Norway also had 
a large proportion of individuals assigned to the UK cluster. Program 
TESS assigned individuals similarly, but found additional substructure 
within Canada and within the Netherlands (Figure 1b). European pole-
cats, sampled in England, primarily assigned to the UK cluster in both 
programs. On a subsetted dataset, with no spatial priors and equal 
sample size among countries (N = 15), program STRUCTURE also indi-
cated six clusters based on model probability (LnP(D); Figure 1c). The 

major geographic trends were similar among all programs; however, 
STRUCTURE assigned the majority of polecats distinctly from ferrets 
(Figure 1c), indicating spatial priors in GENELAND and TESS may have 
overridden the genetic differences among polecats and ferrets in the 
UK. Alternatively, the same results might have been observed if equal-
ization of sample sizes were performed in programs GENELAND and 
TESS.

The DAPC showed similar patterns to the previous analyses and 
supports the genetic distinction between ferrets and polecats in the 
UK (Figure 2). Australia had the least amount of overlap with any other 
country, indicated by DAPC axis 1 (26.3% of total variation), which 
primarily separated Australia from all other countries. Polecats clus-
tered most closely to ferrets in the UK, with some overlap. Australian 
and North American ferrets are most distinct from sampled European 
polecats, and then ferrets from the UK, indicated on DAPC axis 2 
(15.7%). Similar to Bayesian analyses, New Zealand clustered between 
UK and Australian ferrets, but most closely to the UK. Ferrets from 
Hungary and Norway also clustered closely to the UK. Ferrets from 
Denmark, Sweden, and the Netherlands clustered together between 
UK and North American ferrets.

3.2 | Microsatellite loci and genetic diversity

Based on genetic diversity estimates that are robust to sample size 
or account for sample size, ferrets from Australia, Canada, and the 
United States had the lowest genetic diversity (Table 2). Australian 
ferrets, despite having the largest sample size, had only a single 
private allele and the lowest number of polymorphic loci. North 

TABLE  1 Summary of country-level pairwise FST (below axis) and GENELAND genetic cluster-level pairwise FST (above axis) estimates

Country
Genetic 
cluster

Australia – Non-UK 
Europe

Australia UK & NZ

Canada 0.09 – 0.08 0.14 0.08 North 
America

Denmark 0.08 0.04 – – 0.11 0.03 Non-UK 
Europe

England 0.08 0.05 0.03 – – 0.11 Australia

Hungary 0.07 0.06 0.03 0.05 –

The 
Netherlands

0.06 0.06 0.03 0.04 0.03 –

Norway 0.07 0.05 0.01 0.02 0.03 0.03 –

NZ 0.06 0.07 0.04 0.03 0.05 0.05 0.02 –

Scotland 0.09 0.07 0.03 0.01 0.05 0.04 0.02 0.04 –

Sweden 0.09 0.05 0.02 0.04 0.06 0.05 0.02 0.05 0.05 –

USA 0.09 0.03 0.06 0.05 0.06 0.05 0.06 0.07 0.07 0.06 –

Polecat 0.13 0.09 0.06 0.05 0.06 0.07 0.06 0.08 0.05 0.07 0.09

Australia Canada Denmark England Hungary The 
Netherlands

Norway NZ Scotland Sweden USA

UK, United Kingdom; NZ, New Zealand; USA, United States of America.
All pairwise FST estimates were significant (p < .05 based on 1,000 permutation tests) except the England–Scotland comparison.
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American ferrets had no private alleles and, with Australia, shared 
among the lowest measures of allelic richness, Shannon index of al-
lelic diversity, and heterozygosities. Ferrets from the United States 

and Australia, respectively, had the highest measures of internal 
relatedness (i.e., inbreeding). New Zealand, England, and Scotland 
ferrets had intermediate levels of genetic diversity. Ferrets from all 

F IGURE  1 Population assignments 
(a–c) of ferrets (N = 765) and European 
polecats (Mustela putorius; N = 15). 
Program GENELAND (a) identified four 
genetic clusters whereas programs TESS (b) 
and STRUCTURE (c) identified six clusters. 
TESS identified additional substructure 
in Canada and the Netherlands. On a 
subsetted dataset with equal sample sizes 
for each country (N = 15), STRUCTURE 
assigned most of the European polecats 
to their own cluster. Polecats were 
sampled from the United Kingdom and are 
presented on the far right
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F IGURE  2 Genetic clustering of 
ferrets based on a discriminant analysis 
of principal components. Each dot is an 
individual ferret or polecat. Each color 
represents a population identified by 
program TESS (Figure 1b). European 
polecats are represented as black squares 
for easier visualization and based on 
STRUCTURE analyses (Figure 1c). 
Discriminant function 1 (x-axis) accounted 
for 26.3% of the variation and discriminant 
function 2 (y-axis) accounted for 15.7%. 
The inset barplot shows which axes are 
being displayed and the relative proportion 
of variation explained by each of the nine 
discriminant functions. Two-thirds of the 
individuals in each country are contained 
within the corresponding ellipsoid
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other European countries had relatively high estimates of genetic 
diversity and Hungarian ferrets had the highest allelic richness, 
number of private alleles, Shannon index, heterozygosities, and the 
lowest internal relatedness. Notably, ferrets from all countries had 
mean positive values for internal relatedness, indicative of universal 
inbreeding.

4  | DISCUSSION

Intercontinental ferret (Mustela putorius furo) trade has resulted in 
geographically distinct genetic clusters, likely resulting from founder 
events and geographic isolation combined with inbreeding and ge-
netic drift. Spatially explicit programs TESS and GENELAND showed 
comparable population structure, however, TESS identified additional 
substructure within North America and Hungary. Additionally, our 
nonspatial STRUCTURE results were highly consistent with those 
from TESS and GENELAND except that STRUCTURE identified the 
sampled polecats to be genetically distinct from domestic ferrets, in-
dicating the algorithms from the spatial programs or unequal sample 
sizes may have overridden the genetic differences between polecats 
and ferrets in the UK. Within our sample, ferrets within any single 
country tended to assign to only one of the four genetic clusters, in-
cluding the United Kingdom (UK), non-UK Europe, North America, or 
the Australia cluster. Exceptions to this pattern were New Zealand 
and Norway. Ferrets in New Zealand primarily assigned to the UK 
cluster but also shared assignments with the Australian cluster, sup-
porting the hypothesis that New Zealand ferrets originated from 
England and from Australia (Buller, 1877). Ferrets from Norway either 
assigned to the UK or the non-UK European cluster. The four major 

clusters showed extreme variation in genetic diversity and inbreeding 
measures. Ferrets in Europe had higher levels of genetic diversity than 
ferrets on other continents. Australia, Canada, and the United States 
had ferrets with the lowest genetic diversity and highest inbreeding 
measures. New Zealand, because of its shared ancestry, had low levels 
of genetic diversity, but greater diversity than Australian ferrets.

European polecats all exhibited variation at the microsatellite loci 
developed from the domestic ferret (Ernest et al., 2012), implying 
common ancestry (Blandford, 1987; Hosoda et al., 2000; Kurose et al., 
2000, 2008). However, we did not sample other polecat species and 
therefore cannot determine whether the domestic ferret was domes-
ticated from other possible species. Identifying the source location for 
each domestic cluster remains difficult because we do not have sam-
ples from each European country where ferrets are present and ferrets 
in Europe could potentially be hybridized with wild polecats or poten-
tially other species (Costa et al., 2013; Lodé et al., 2005; Pitt, 1921; 
Poole, 1972), reducing any signal of relationships (Davison et al., 1999; 
Marmi et al., 2004). Although spatial population assignment models 
did not differentiate polecats from ferrets, a subsampled dataset with 
equal sample sizes and uniform priors indicated a genetic distinction, 
which is consistent with the DAPC.

A previous study observed high expected heterozygosities 
(mean ± SE: 0.58 ± 0.12) and allelic richness (3.93 ± 0.13) among 
populations of European polecats from mainland Europe (Pertoldi 
et al., 2006). Cross-breeding between ferrets and genetically diverse 
polecats could explain the high genetic diversity observed in non-UK 
European countries. In contrast, polecats in the UK experienced a dra-
matic reduction in population size during the 19th century (Langley & 
Yalden, 1977), leading to a genetic bottleneck (Costa et al., 2013). Our 
observations of genetic diversity for polecats from UK are consistent 

TABLE  2 Genetic diversity of ferrets and European polecats

Country N Ar SE PrA PoL I SE HO SE uHE SE IR SE

European polecat (Mustela putorius)

England 15 3.19 0.24 2 100 0.82 0.06 0.41 0.03 0.48 0.04 0.17 0.07

Domestic ferret (M. putorius furo)

Australia 222 2.25 0.05 1 90 0.54 0.05 0.30 0.03 0.32 0.03 0.23 0.01

Canada 56 2.27 0.10 0 94 0.56 0.05 0.34 0.03 0.35 0.03 0.16 0.02

Denmark 60 3.15 0.11 8 100 0.81 0.05 0.39 0.03 0.47 0.02 0.15 0.03

England 63 2.90 0.10 5 97 0.69 0.05 0.34 0.03 0.39 0.03 0.20 0.03

Hungary 19 3.43 0.27 9 97 0.83 0.06 0.43 0.03 0.48 0.03 0.07 0.03

The 
Netherlands

48 2.97 0.12 4 100 0.78 0.05 0.38 0.03 0.46 0.03 0.16 0.03

Norway 41 3.11 0.13 1 100 0.78 0.05 0.40 0.02 0.45 0.03 0.11 0.04

New Zealand 74 2.63 0.09 3 100 0.64 0.05 0.33 0.03 0.37 0.03 0.21 0.02

Scotland 16 2.87 0.23 1 97 0.67 0.05 0.39 0.04 0.41 0.03 0.10 0.05

Sweden 27 2.83 0.15 2 100 0.74 0.05 0.41 0.04 0.45 0.03 0.10 0.04

United States 139 2.40 0.05 0 100 0.56 0.05 0.30 0.03 0.33 0.03 0.25 0.02

N, sample size; Ar, sample size-corrected allelic richness; PrA, raw private alleles; PoL, percent of polymorphic loci standardized to sample size; I, Shannon 
index; HO, observed heterozygosity; uHE, unbiased expected heterozygosity which is robust to sample size differences; IR, average individual internal re-
latedness based on the entire sample of ferrets and polecats; SE, standard error.
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with previous reports (Costa et al., 2013), which are higher than those 
of domestic ferrets but lower than polecats from mainland Europe 
(Moller et al., 2004; Pertoldi et al., 2006). Ferret hybridization is com-
mon in the UK but does not seem to be increasing genetic diversity in 
pet ferrets, possibly because ferret hybridization is occurring with a 
genetically recovering polecat population that recently went through 
a bottleneck (Costa et al., 2013). Additionally, three of the 15 polecats 
assigned as UK ferrets using STRUCTURE, which could indicate we 
sampled 12 wild polecats and three feral ferrets. Combined, this could 
explain the high internal relatedness observed in polecats, despite the 
high genetic diversity. Notably, Hungarian then Danish ferrets had 
the most private alleles and the highest measures of genetic diversity. 
Hungary is the only country we sampled with both European pole-
cats (M. putorius) and Steppe polecats (M. eversmanii Lesson, 1872) 
(Lanszki & Heltai, 2007; Šálek et al., 2013). Similarly, Denmark has 
both European polecats and American mink (Neovision vison Schreber, 
1777) (Hammershøj et al., 2006). Although we do not have direct ev-
idence for hybridization, the mechanism leading to unique alleles in 
these countries could be a result of hybridization or large effective 
population sizes.

None of the countries in which we sampled ferrets had an ex-
pected heterozygosity (mean among all domestic ferrets in our data-
set: 0.41 ± 0.10) or allelic richness (mean among all domestic ferrets in 
our dataset: 2.80 ± 0.10) approaching those of their wild counterparts 
(Moller et al., 2004; Pertoldi et al., 2006), indicating founder events, 
genetic drift, and/or inbreeding have affected ferret genetic diversity 
(Diamond, 2002; Petersson et al., 1996; Teletchea & Fontaine, 2014). 
In natural systems, internal relatedness values range from negative 
(i.e., genetically outbred) to positive (i.e., genetically inbred; Amos 
et al., 2001). Ferrets from all countries exhibited mean positive inter-
nal relatedness, indicative of widespread inbreeding. Artificial selec-
tion is well known to reduce genetic diversity (Driscoll et al., 2009; 
Leroy, 2011; Muñoz-Fuentes et al., 2014) and breeding for ferret coat 
color has been shown to be associated with genetically determined 
physical abnormalities (Blaszczyk et al., 2007; Piazza et al., 2014), 
which could be an indication of inbreeding depression (Charlesworth 
& Charlesworth, 1999; Hedrick & Garcia-Dorado, 2016; Leroy, 2014). 
Cancer rates are increasing in pet ferret populations (Antinoff & 
Williams, 2012; Bakthavatchalu, Muthupalani, Marini, & Fox, 2016), 
and although the mechanism for increasing cancer rates is currently 
unknown (Fox, Muthupalani, Kiupel, & Williams, 2014), inbreeding 
and low genetic diversity are suspected (Bakthavatchalu et al., 2016; 
Bielinska et al., 2009). If lack of genetic diversity is a contributor to 
cancer acquisition, as in other systems (Epstein et al., 2016; McAloose 
& Newton, 2009; Morris, Wright, Grueber, Hogg, & Belov, 2015; 
Rahman, 2014), ferrets in Australia, Canada, New Zealand, and the 
United States are most at risk.

One of the primary ways to reverse inbreeding depression is 
through genetic restoration (Frankham, 2015; Whiteley, Fitzpatrick, 
Funk, & Tallmon, 2015). In domestic animal populations, genetic res-
toration requires human intervention and breeding programs (Ralls 
& Ballou, 1986; Rollinson et al., 2014). However, international trade 
laws could limit the feasibility of introducing new genetic material to 

genetically depauperate pet ferret populations, especially on conti-
nents without potential for interbreeding with wild polecats. For ex-
ample, ferrets are common pets in Australia (Talbot, Freire, & Wassens, 
2014) and our study supports the assertion that inbreeding has been 
a national problem (Lewington, 2007b). However, ferret importation 
is currently illegal in Australia (Department of the Environment and 
Energy, 2017) and ferrets are completely prohibited in Queensland 
(Queensland Government, 2016) and the Northern Territory (Northern 
Territory Government, 2016). Despite New Zealand allowing ferret 
exportation for permitted breeders, the purchase and importation of 
ferrets were banned because of damage to native species (Lee, 2002; 
O’Donnell et al., 2017; Wells, 2009). Thus, Australia and New Zealand 
breeders should actively minimize inbreeding among currently avail-
able ferrets.

We do not see any particular utility for maintaining genetically 
distinct ferret clusters in most cases. Thus, for countries with inbred 
ferrets, we recommend that pet and laboratory breeding programs 
should incorporate ferrets from other countries. Although outbreeding 
depression could result from such crosses, the potential for inbreeding 
depression is much more likely (Rollinson et al., 2014). Additionally, it 
could also be genetically beneficial for breeding programs to introduce 
new genes into their domestic lines through ethical and legal cross-
breeding with wild polecats. However, this could potentially result in 
ferrets with different behaviors than those that are considered desir-
able for pets (Hernádi et al., 2012) or the introduction of unwanted 
diseases. If this action is taken, breeders should ensure ferrets do not 
breed into the wild population, which could put the wild population 
at risk of genetic disorders (Costa et al., 2013; Rhymer & Simberloff, 
1996). To reduce potential risk of inbreeding depression, ferret breed-
ing programs designed for specific coat colors should consider mating 
unrelated individuals and occasionally “diluting” specific coat-color 
lines with individuals of different varieties.

The United States and Canada allow ferret importation (Animal 
and Plant Health Inspection Service, 2016; Canadian Food Inspection 
Agency, 2015), yet have among the lowest measures of genetic diver-
sity observed. Despite the large sample size, North American ferrets 
had no private alleles, providing no evidence of hybridization with 
native black-footed ferrets (Williams et al., 1996). The opportunity 
for increasing domestic ferret genetic diversity in North America is 
currently available and should be considered given the application of 
ferrets as model organisms in North American biomedical laborato-
ries (Ball, 2006; Jones et al., 2017; Peng et al., 2014; Porter, 2016; 
Vanchieri, 2001). Researchers should consider the effect low genetic 
diversity and inbreeding can have on the results and inferences from 
disease exposure experiments (Spielman, Brook, Briscoe, & Frankham, 
2004; Whiteman, Matson, Bollmer, & Parker, 2006). Although causal 
links between neutral genetic markers and neoplasms cannot be 
made, our research highlights the lack of genetic variation present 
in certain ferret clusters. With the sequencing of the ferret genome 
being recently completed (Peng et al., 2014), researchers can now 
search the genome for specific genes which may be linked to can-
cer acquisition in this developing cancer model system (Aizawa et al., 
2013, 2016).
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Overall, our study identified international and intercontinental 
domestic ferret population structure and indicates Australian and 
North American ferrets have the lowest genetic diversities and are 
most highly diverged from the European polecat. Given current im-
portation bans, New Zealand ferrets are essentially isolated and, in 
the future, may also exhibit patterns of low genetic diversity and 
inbreeding. Prevention or mitigation of inbreeding depression will 
require international cooperation among breeding programs and 
should include genetically diverse ferrets from mainland Europe. In 
some cases, political factors limit the ability of potential interna-
tional breeding programs. This research highlights the need for pol-
iticians, coat-oriented breeders, and laboratory-stock breeders to 
reassess their policies. Given the close relatedness among domestic 
ferrets, European polecats, Steppe polecats, black-footed ferrets, 
American mink, and European mink (Cabria et al., 2011; Kurose 
et al., 2008; Lodé et al., 2005; Williams et al., 1996), the conserva-
tion genetics approach used in this study has practical applications 
for conserving the genetic diversity of related wild species that 
could face reduction in genetic diversity when hybridized with feral 
ferrets (Bonesi & Palazon, 2007; Cabria et al., 2015; Šálek et al., 
2013; Wisely, Buskirk, Fleming, McDonald, & Ostrander, 2002) and 
for the identification and management of feral ferret source popu-
lations causing ecosystem damage (Bodey, Bearhop, & McDonald, 
2011; Byrom, Caley, Paterson, & Nugent, 2015; O’Donnell et al., 
2017; Wells, 2009).
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